
Parallel Trace Replay with
Approximated Causal Events (//TRACE)

Mike Mesnier (Intel/CMU), Matthew Wachs
Raja Sambasivan, Julio Lopez, James Hendricks

Greg Ganger, Garth Gibson

Parallel Data Lab
Carnegie Mellon University

2

The utility of I/O traces
• Analysis of the I/O accesses

• To determine program structure
– E.g., Is the I/O schedule efficient?

• To automatically tune the storage
– E.g., Which RAID level is best?

• Parallel trace replay
• For storage system evaluation
• Learnings from LANL pseudo-application

Unknown I/O dependencies
make all of the above very challenging

3

Trace replay usage model

Traces must include dependency information

?

PARALLEL
APPLICATION

I/O

DATA

STORAGE
SYSTEM

COMPUTE
CLUSTER

NEW
STORAGE
SYSTEM

I/O
Traces

PARALLEL
REPLAYER

DUMMY
DATA

Dependencies??

4

How one might annotate a trace
Node 0

fh = open(“foo”)
…
write(fh, …)
…
write(fh, …)
...
close(fh)

Time

Node 1 is blocked until node
0 executes its close operation

SIGNAL(1)
WAIT(0)

APPROXIMATE EVENT

COMPUTE()

COMPUTE()

COMPUTE()

COMPUTE()

COMPUTE()

Node 1

fh = open(“foo”)

read(fh, …)

close(fh)

5

• Time = compute + I/O + synchronization
• Compute held constant for storage system eval.

It’s all about timing

READING

READING

READING

WAITING

WAITING

COMPUTING

COMPUTING

COMPUTING

WRITING

WRITING

WRITING

WAITING

WAITINGWAITING

WAITING

Node 1

Node 2

Node 0

Barrier 2 Barrier 4Barrier 1 Barrier 3
Time

Compute and synchronization time must be
modeled for accurate trace replay

6

Alternative 1: “as-fast-as-possible”

COMPUTING

COMPUTING

COMPUTING

READING

READING

READING

WAITING

WAITING

WRITING

WRITING

WRITING

WAITING

WAITINGWAITING

WAITING

Node 1

Node 2

Node 0

Not realistic for most applications

WRITING

WRITING

WRITING

• Removes idleness, adds false concurrency
• Assumes I/O is the only bottleneck
• Reasonable for “closed” apps (e.g., backup)

7

COMPUTING

COMPUTING

COMPUTING

Alternative 2: timing-accurate replay

READING

READING

READING

WAITING

WAITING

WAITING

WAITINGWAITING

WAITING

Node 1

Node 2

Node 0

Underestimates application-storage interaction

WRITING

WRITING

WRITING

• Tests if a storage system can “keep up”
• Unclear how to scale the replay rate

• Compute and synchronization are discarded
• Reasonable for “open” apps (e.g., video)

timing preserved

8

Outline
• Motivation
• Design and implementation
• Evaluation

9

Design goals
• Replay should scale like the application

• Replay the same I/O (easy)
• Preserve compute time between I/Os (non-trivial)
• Respect I/O dependencies (non-trivial)

• Tracing mechanism should be black-box
• No modification to the application

• Traces should be file-level, in order to:
• Evaluate different file/storage systems

– E.g., ext vs. reiser, blocks vs. objects
• Capture system effects (e.g., request coalescing)

10

Summarizing the challenges
• Preserve compute time between I/Os

• Compute time and synchronization time both
appear as “think time” without any I/O

• Synchronization time is variable
– ComputeTime = ThinkTime – SyncTime (?)

• Respect I/O dependencies
• Must discover & replay synchronization

Hint at solution: the slowest node has zero
synchronization time and forces all nodes to block

11

Recall: node 1 is the slowpoke

• Node 1 has no sync. time
• I.e., ComputeTime = ThinkTime

• When nodes 0 and 2 block on node 1:
• We know which I/Os have completed
• We can identify the blocked (dependent) I/O

READING

READING

READING

WAITING

WAITING

COMPUTING

COMPUTING

COMPUTING

WRITING

WRITING

WRITING

WAITING

WAITINGWAITING

WAITING

Node 1

Node 2

Node 0

Barrier 2 Barrier 4Barrier 1 Barrier 3

I/O DEPENDENCY

I/O DEPENDENCY

How do you know when an
application is blocked??

12

Our solution in a nutshell
• First, run app and trace I/O from each node

• Calculate max inter-arrival time per node (MAX)
– Used to determine if node is blocked

• Second, re-run the app multiple times
• For each run, pick a node and “throttle” its I/O

– Record which nodes block
– Calculate time between I/Os (compute time)

• Third, annotate traces with learned info.
• COMPUTE(<compute time>)
• SIGNAL(<blocking node id>)
• WAIT(<throttled node id>)

13

Recall: How one might annotate a trace
Node 0 (THROTTLED)

fh = open(“foo”)
…
write(fh, …)
…
write(fh, …)
...
close(fh)

Time

Node 1 is blocked until node
0 executes its close operation

SIGNAL(1)
WAIT(0)

APPROXIMATE EVENT

COMPUTE()

COMPUTE()

COMPUTE()

COMPUTE()

COMPUTE()

Node 1 (BLOCKING)

fh = open(“foo”)

read(fh, …)

close(fh)

14

Why this should work
• Many apps share a common model

• Static partitioning among the compute nodes
• Deterministic I/O dependencies

– E.g, node 1 reads after node 0 writes
• Throttling will not change:

• How much work a node does
• The I/O dependencies among the nodes

• Other models we are considering:
• Dynamic partitioning (work conserving)
• Nondeterministic I/O dependencies (e.g., locking)

– E.g., node 0 writes unless node 1 is reading

15

The high-level design

Application Node n

CAUSALITY ENGINE
(LD_PRELOAD)

PARALLEL
APPLICATION

I/O

DATA

OS

Other shared libraries
(e.g., libc)

Result: I/O traces annotated with
compute time and I/O dependencies

Annotated
I/O trace

Non-throttling mode
For each I/O system call
1. Issue the I/O operation
2. Add WAIT(<throttled node>) to

the trace if application blocks

Throttling (slowpoke) mode
For each I/O system call
1. Add COMPUTE(<time>) to trace,

i.e., the time since the last I/O
2. Throttle the I/O
3. Add SIGNAL(<node>) to trace

for any node that blocks
4. Issue the I/O

16

Outline
• Motivation
• Design and implementation
• Evaluation

17

Experimental setup
• 2 parallel applications

• QUAKE application from CMU
• Checkpointing benchmark from LANL
• Micro-benchmarks from Intel

• 4 storage arrays (iSCSI)
• Open-E, Lefthand Networks, EqualLogic
• Intel reference target (open source)
• PVFS for the Quake runs

• 8 compute nodes for running the apps
Goal: compare application to replay

performance on each platform

18

Evaluation methodology
• Run all apps through the causality engine

• To create an annotated trace for replay
• Measure replay performance on all platforms

• Performance (throughput)
• Average latency

• Compare to the actual application:
• Relative difference in throughput (%)
• Relative difference in average latency (%)

• This talk reports differences in running time

19

Replay error (average throughput)

80
50

6
50

200

72

10 9 5 14 10 11
0

50
100
150
200
250

Micr
o1

Micr
o2

Pse
ud

o
Pse

ud
oB

Pse
ud

oB
C

Qua
ke

R
el

at
iv

e
Er

ro
r (

%
)

AFAP

//TRACE

//TRACE achieves < 15% error in all tests

20

Summary
• App Time = compute + I/O + synchronization

• Trace replay must consider all three
• Once can throttle a node’s I/O to determine

• Its compute time (synchronization time is zero)
• Its I/O dependencies among the other nodes

• We see potential with this approach

21

Future work
• Challenges and opportunities

• Scaling up (via intelligent sampling)
• Providing IT assistance

– Informing purchasing decisions
– Replay-guided storage configuration

• Providing programmer feedback
• Test on more HPC and enterprise apps
• Make //TRACE accessible to others

• An alternative to strace and ltrace
• A repository of annotated I/O traces

	Parallel Trace Replay with �Approximated Causal Events (//TRACE)
	The utility of I/O traces
	Trace replay usage model
	How one might annotate a trace
	It’s all about timing
	Alternative 1: “as-fast-as-possible”
	Alternative 2: timing-accurate replay
	Outline
	Design goals
	Summarizing the challenges
	Recall: node 1 is the slowpoke
	Our solution in a nutshell
	Recall: How one might annotate a trace
	Why this should work
	The high-level design
	Outline
	Experimental setup
	Evaluation methodology
	Replay error (average throughput)
	Summary
	Future work

